
1

The Research Monograph Series in Computing, Electrical & Communication Networks
Vol. 1 (01), April 2023, pp. 1–7

CHAPTER 1

INTRODUCTION

Over the decades many advanced systems have been created by the
mankind through the inventions and the applications of new technologies
System engineering gains a broader discipline due to the emergence of
new inventions and technologies that creates new engineering disciplines.
Understanding the fulfillment of performance requirements is the
fundamental thing in the software development process, which represents
the expectation of end users from the software system. Otherwise this
results in critical consequences of the system. The phases with wrong
decision at early development phases, heavily affect the quality of the final
software product, they may demand for an expensive rework and it may
include the involvement of overall software systems. In order to avoid the
failure of the entire projects, the performance issues must be identified
early at the right time.

The earliest model is the software architecture of a software system,
according to Perry and Wolf (1992), architecture refers to the selected
architectural elements, their interactions and the constraints on those
elements. This thesis follows the views of computational components
(Koziolek A. and Trubiani C., 2011) with thin description of interactions.

Predicting quantitative results has been the basis for the applications
of several successful approaches through performance of software
systems.

1.1 SOFTWARE PERFORMANCE ENGINEERING

Over a decade new types of approaches have been applied to take the
problem of modeling and qualifying the software performance right from
the beginning of the life cycle, as automation has gained the prediction
role (Hauck M. et al., 2009) in generation of performance models from
software artifacts.

By changing both the structure and the behavior of a system, the new
architecture is obtained. More particularly the model solution suggests
specific replacement of existing software units with different available
instances to modify the system structure, when it becomes necessary of

2 Refactoring of Software Architectural Design for Performance Optimization

new software units. The model solution suggests how to bring out and
apply the changes in the system behavior through the system scenario’s
expressed using UML (Grady B. et al., 1999) sequence diagrams and by
carrying out the removal or introducing interactions between existing
units and the new units. Depending on the adopted model notation,
of the application domain, environmental constraint etc, different
elements stand as the base for the strategies during the identification of
performance problems.

1.2 ARCHITECTURE OF THE SOFTWARE

The crisis of software architecture, (Garlan D. and Perry, 1994), as a
foundational concept for the development of large complex systems,
support five aspects of the software development in respect to understand,
reuse, evolution, analysis and management. The most primitive model
of a software system created along the lifecycle is software architecture.
According to Perry and Wolf (1992) the architecture is selection of
architectural elements which include their interactions all with the
constraints on those elements. In the view of Garlan and Shaw (2003) the
architecture is defined as a combination of the collection of computational
components (Koziolek H. et al., 2008, 2010) and the description of their
interactions, of these this thesis adopts the latter. While the abstract
view of the software system is provided by a software architectural
model (Aldrich J., 2008), different system information is provided by the
complementary types of model. A software development model is shown
in Figure 1.1. These different models are presented through various
perspectives focusing on the behavior of the system, external perspective
based on the system’s context.

1.3 SOFTWARE DEVELOPMENT PROCESS

The increase in terms of size, logical distribution and the complexity of
interactions in software systems out phases the growing importance of
early performance assessment. From the early phases of the lifecycle an
integrated software process cannot be built by the software developers
who find no time and create distance among software model notations
and performance model representation (Averill M.L. and David Kelton
W., 2000). The distance between the world view adopted by software
developers and performance experts is one of the issues that prevent the
performance validation from being a common practice in the software
lifecycle. Generally static and (Bahsoon R., 2007) models with functional
aspects are used by software developers to describe a system. Keeping

 Introduction 3

in view of deserving meaningful performance models, performance
experts show additional interest in non functional aspects, such as
the operational profile i.e., the estimation of execution probabilities of
different (Mirandola R. and Hollinger D., 1997) software systems need to
integrate software models.

UML is temporarily accepted as a standard for designing new
systems (Yuanfang C. et al., 2006) helps system designers with its

Performance model

Performance indices

Model IZ model

transformation

Model solution

Result interpretation &

Feedback generation

(Annotated)Software model

End

Start

Figure 1.1 Software Development Models.

4 Refactoring of Software Architectural Design for Performance Optimization

array of notations to capture their ideas and to make the ideas early
understandable and expressive. UML (Alawneh L. et al., 2006) has the
limitation, although it is a means of predicting the systems performance
directly. Prediction of performance as a feature helps to decide the worth
of implementation of a particular design.

1.4 UML

Improving the ability to evaluate software and system design for non-
functional properties like performance, reliability and security has been
emphasized (Arief L.B. and Speirs N.A., 2000). This evolution can be
made suitable for additional information, annotation and attached to the
design. Performance and schedulability standard (Object Management
Group, 2002) has been addressed in the standard UML profile for
schedulability performance and time. (Harel D. et al., 2004).

Capturing the proven architectural design patterns (Smith C.U. et al.,
2003) of the domain stand as first class modeling constructs and they are
highly useful facilitating the design of good architectures. They are two
types of fundamental complementary diagram provided by UML for
capturing the logical structure of systems. They are class diagrams and
collaboration diagrams (France R.B. et al., 2004). Universal relationships
among classes, existing among the instances of the classes in all contexts,
are captured by class diagrams. A strong emphasis is laid on the usage of
collaboration diagrams in this modeling approach wherein the mediators
between architectural entities are explicitly represented by similarity, a
combination of class and collaborative diagrams facilitates to obtain the
complete specification of the structure of a complex real time system
(Henrik Ejersbo Jensen et al., 2000). The three principal constructs for
modeling structure are specially defined as

• Capsules
• Ports
• Connectors

1.4.1 Capsules

One or more signal-based boundary objects (Aldrich J. et al., 2008) are
called ports through which capsule with the outside world and it is physical
part of the implementation of a capsule with a specific interface as shown
in Figure 1.2. Each part of a capsule plays a particular role in collaboration
with capsules other object, which are associated with a protocol to capture

 Introduction 5

the semantics of these interactions. The valid flow of information between
connected ports of capsules is defined by the protocol.

1.4.2 Ports

The purpose of ports which are objects act as boundary objects for a
capsule instance. Ports, owned by the capsule instance are created and
destroyed along the capsule. Thus each port creates its own identity
to prove the ports, which are distinct from the identity and state their
owning capsule instance.

1.4.3 Connectors

Two or more ports are interconnected by the connectors which are
abstract views of signal-based communications channels. It is a must for
the ports bound by a connection to play mutually complementary but
comfortable roles in a protocol. Their representatives are exhibited by
association roles that interconnect the appropriate ports in collaboration
diagrams. The key communication relationship between capsules can be
really captured by connectors (Arief L.B. et al., 2000) when the ports are
removed from this picture.

1.5 FEEDBACK

The interpretation of performance analysis results and the generation of
architectural feedback can be forced in the literature related works. These
are mostly based on monitoring techniques which are conceived to act for
tuning its performance after software deployment. We have applied a model
based approaches in the software life cycle support of design decisions.

Various approaches have successfully solved the difficult task of
transforming software models into performance model during the last
decade, but evaluating and developing the performance of a software

Capsule A

Class A
Port

Class X

Protocol Role

Master

Protocol A

Figure 1.2 Allocation of ports, protocols, and their roles.

6 Refactoring of Software Architectural Design for Performance Optimization

system is still being a research issue. Here we have proposed a novel
method to develop a performance model based on the design of software
which follows forward path and backward path. A forward path is defined
for the software model to identify the performance indices, represented
by the modeling and analysis phase.

1) The Performance Indices are the numeric values that are linked to
model entities which examine the problems in the approach.

2) Various levels of granularity project the performance indices with
the model evaluations as outcome to maintain and manage indices
abstractions (Sabetta A. et al., 2005) at all levels.

3) The involvement of various characters of software system like static
structure dynamic behavior and cross checking of the characters
raise the performance problem that makes the software models
difficult.

Our work presents a UML profile represents the role of an attribute
as an operation, a class that plays in a design pattern and distinguishes
multiple instance of a design pattern. As it is already noted, UML is used
to capture these constructs proved, the absence of extendible constructs
need to introduce new UML modeling concepts.

1.6 PROBLEM DESCRIPTION

An abstract view of the software system is presented through the
software architectural model. Different system information from
different perspectives is presented by different complementary types of
models, e.g. systemic context (Harman M. et al., 2009) of environment
through external behavior of the system to show behavioral perspective.
Annotated models are referred as they add information to execute
performance analysis e.g. incoming work load is the system service
demands, software characters etc.

1.7 RESEARCH OBJECTIVE

The thesis will exactly

• Recognize about the translation of software model into
performance model.

• Analyze the software model with respect to the performance indices.
• Implement an automatic transforming software model.

 Introduction 7

In order to attain this entire goal, this research has developed a
framework which has the capability of refactoring (Han J. et al., 2007) the
software architectural design to give a better performance with respect
to the performance indices, by evaluating them at the design phase of
software development.

The sub objectives of this research are:

• Analyzing and study about UML
• Research about the software development architecture.

1.8 RESEARCH APPROACH

This research study as in Figure 1.3 starts with the field of automatic
transforming software model under the literature study (A) In which
UML model software architecture has been used to design the automatic
transforming software models found during this literature study (B) and
implement the automatic transforming software model with feedback
system (C) from the design.

The problem of automatically transforming software artifacts into
performance models has been overcome successfully in the last decade by
using various approaches (Yuanfang C., 2006).

Automatic
transforming

software

Designing the
model with
UML model

software
architecture

Implementing the
automatic

transforming
software

architecture

(A)
(B)

(C)

Figure 1.3 Research Approach.

